Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Vaccine ; 2023.
Article in English | EuropePMC | ID: covidwho-2298051

ABSTRACT

COVID-19 vaccine efficacy (VE) has been observed to vary against antigenically distinct SARS-CoV-2 variants of concern (VoC). Here we report the final analysis of VE and safety from COV005: a phase 1b/2, multicenter, double-blind, randomized, placebo-controlled study of primary series AZD1222 (ChAdOx1 nCoV-19) vaccination in South African adults aged 18–65 years. South Africa's first, second, and third waves of SARS-CoV-2 infections were respectively driven by the ancestral SARS-CoV-2 virus (wild type, WT), and SARS-CoV-2 Beta and Delta VoCs. VE against asymptomatic and symptomatic infection was 90.6% for WT, 6.7% for Beta and 77.1% for Delta. No cases of severe COVID-19 were documented ahead of unblinding. Safety was consistent with the interim analysis, with no new safety concerns identified. Notably, South Africa's Delta wave occurred ≥ 9 months after primary series vaccination, suggesting that primary series AZD1222 vaccination offers a good durability of protection, potentially due to an anamnestic response. Clinical trial identifier: CT.gov NCT04444674

2.
Lancet Infect Dis ; 2022 Oct 20.
Article in English | MEDLINE | ID: covidwho-2270243

ABSTRACT

BACKGROUND: COVID-19 vaccine rollout is lagging in Africa, where there has been a high rate of SARS-CoV-2 infection. We aimed to evaluate the effect of SARS-CoV-2 infection before vaccination with the ChAdOx-nCoV19 (AZD1222) vaccine on antibody responses through to 180 days. METHODS: We did an unmasked post-hoc immunogenicity analysis after the first and second doses of AZD1222 in a randomised, placebo-controlled, phase 1b-2a study done in seven locations in South Africa. AZD1222 recipients who were HIV-uninfected, were stratified into baseline seropositive or seronegative groups using the serum anti-nucleocapsid (anti-N) immunoglobulin G (IgG) electroluminescence immunoassay to establish SARS-CoV-2 infection before the first dose of AZD1222. Binding IgG to spike (anti-S) and receptor binding domain (anti-RBD) were measured before the first dose (day 0), second dose (day 28), day 42, and day 180. Neutralising antibody (NAb) against SARS-CoV-2 variants D614G, beta, delta, gamma, and A.VOI.V2, and omicron BA1 and BA.4 variants, were measured by pseudovirus assay (day 28, day 42, and day 180). This trial is registered with ClinicalTrials.gov, NCT04444674, and the Pan African Clinicals Trials Registry, PACTR202006922165132. FINDINGS: Of 185 individuals who were randomly assigned to AZD1222, we included 91 individuals who were baseline seropositive and 58 who were baseline seronegative, in the final analysis. In the seropositive group, there was little change of anti-S IgG (and anti-RBD IgG) or neutralising antibody (NAb) titres at day 42 compared with at day 28. Anti-S (and anti-RBD) IgG geometric mean concentrations (GMCs) were higher throughout in the seropositive compared with the seronegative group, including at day 180 (GMCs 517·8 [95% CI 411·3-651·9] vs 82·1 [55·2-122·3] BAU/mL). Also D614G NAb geometric mean titres (GMTs) were higher in the seropositive group than the seronegative group, as was the percentage with titres of at least 185 (80% putative risk reduction threshold [PRRT] against wild-type-alpha COVID-19), including at day 180 (92·0% [74·0-99·0] vs 18·2% [2·3-51·8). Similar findings were observed for beta, A.VOI.V2, and gamma. For delta, BA.1, and BA.4, NAb GMTs and the proportion with titres above the PRRT were substantially higher in the seropositive compared with seronegative group at day 28 and day 42, but no longer differed between the groups by day 180. INTERPRETATION: A single dose of AZD1222 in the general African population, where COVID-19 vaccine coverage is low and SARS-CoV-2 seropositivity is 90%, could enhance the magnitude and quality of antibody responses to SARS-CoV-2. FUNDING: The Bill & Melinda Gates Foundation, the South African Medical Research Council, the UK Research and Innovation, the UK National Institute for Health Research, and the South African Medical Research Council. TRANSLATION: For the Zulu translation of the abstract see Supplementary Materials section.

3.
AIDS ; 37(1): 105-112, 2023 01 01.
Article in English | MEDLINE | ID: covidwho-2243263

ABSTRACT

OBJECTIVES: This study aimed to investigate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T-cell responses 14 days after single-dose ChAdOx1 nCoV-19 (AZD1222) vaccination in black Africans with and without HIV in South Africa, as well as determine the effect of AZD1222 vaccination on cell-mediated immune responses in people with HIV (PWH) with prior SARS-CoV-2 infection. METHODS: A total of 70 HIV-uninfected people and 104 PWH were prospectively enrolled in the multicentre, randomized, double-blinded, placebo-controlled, phase Ib/IIa trial (COV005). Peripheral blood mononuclear cells (PBMCs) were collected from trial participants 14 days after receipt of first dose of study treatment (placebo or AZD1222 vaccine). T-cell responses against the full-length spike (FLS) glycoprotein of wild-type SARS-CoV-2 and mutated S-protein regions found in the Alpha, Beta and Delta variants were assessed using an ex-vivo ELISpot assay. RESULTS: Among AZD1222 recipients without preceding SARS-CoV-2 infection, T-cell responses to FLS of wild-type SARS-CoV-2 were similarly common in PWH and HIV-uninfected people (30/33, 90.9% vs. 16/21, 76.2%; P = 0.138); and magnitude of response was similar among responders (78 vs. 56 SFCs/106 PBMCs; P = 0.255). Among PWH, AZD1222 vaccinees with prior SARS-CoV-2 infection, displayed a heightened T-cell response magnitude compared with those without prior infection (186 vs. 78 SFCs/106 PBMCs; P = 0.001); and similar response rate (14/14, 100% vs. 30/33, 90.9%; P = 0.244). CONCLUSION: Our results indicate comparable T-cell responses following AZD1222 vaccination in HIV-uninfected people and PWH on stable antiretroviral therapy. Our results additionally show that hybrid immunity acquired through SARS-CoV-2 infection and AZD1222 vaccination, induce a heightened T-cell response.


Subject(s)
COVID-19 , HIV Infections , Vaccines , Humans , SARS-CoV-2 , ChAdOx1 nCoV-19 , COVID-19/prevention & control , Leukocytes, Mononuclear , T-Lymphocytes , HIV Infections/complications , HIV Infections/drug therapy
4.
Clin Infect Dis ; 75(Supplement_1): S11-S17, 2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-1992151

ABSTRACT

Within 2 years after the start of the coronavirus disease 2019 (COVID-19) pandemic, novel severe acute respiratory syndrome coronavirus 2 vaccines were developed, rigorously evaluated in large phase 3 trials, and administered to more than 5 billion individuals globally. However, adverse events of special interest (AESIs) have been described post-implementation, including myocarditis after receipt of messenger RNA (mRNA) vaccines and thrombosis with thrombocytopenia syndrome after receipt of adenoviral vector vaccines. AESIs are rare (<1 to 10/100 000 vaccinees) and less frequent than COVID-19 complications, though they have associated morbidity and mortality. The diversity of COVID-19 vaccine platforms (eg, mRNA, viral vector, protein) and rates of AESIs both between and within platforms (eg, higher rate of myocarditis after mRNA-1273 vs BNT162b2 vaccines) present an important opportunity to advance vaccine safety science. The International Network of Special Immunization Services has been formed with experts in vaccine safety, systems biology, and other relevant disciplines to study cases of AESIs and matched controls to uncover the pathogenesis of rare AESIs and inform vaccine development.


Subject(s)
COVID-19 , Myocarditis , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Immunization , Pandemics/prevention & control , RNA, Messenger
5.
Front Med (Lausanne) ; 9: 893292, 2022.
Article in English | MEDLINE | ID: covidwho-1903044

ABSTRACT

Disease X represents a yet unknown human pathogen which has potential to cause a serious international epidemic or pandemic. The COVID-19 pandemic has illustrated that despite being at increased risk of severe disease compared with the general population, pregnant women were left behind in the development and implementation of vaccination, resulting in conflicting communications and changing guidance about vaccine receipt in pregnancy. Based on the COVID-19 experience, the COVAX Maternal Immunization Working Group have identified three key factors and five broad focus topics for consideration when proactively planning for a disease X pandemic, including 10 criteria for evaluating pandemic vaccines for potential use in pregnant women. Prior to any disease X pandemic, collaboration and coordination are needed to close the pregnancy data gap which is currently a barrier to gender equity in health innovation, which will aid in allowing timely access to life-saving interventions including vaccines for pregnant women and their infants.

6.
Vaccine X ; 11: 100160, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1778351

ABSTRACT

The WHO Global Vaccine Safety Multi-Country Collaboration study on safety in pregnancy aims to estimate the minimum detectable risk for selected perinatal and neonatal outcomes and assess the applicability of standardized case definitions for study outcomes and maternal immunization in low- and middle-income countries (LMICs). This paper documents the operational lessons learned from the study. A prospective observational study was conducted across 21 hospitals in seven countries. All births occurring at sites were screened to identify select perinatal and neonatal outcomes from May 2019 to August 2020. Up to 100 cases per outcome were recruited to assess the applicability of standardized case definitions. A multi-pronged study quality assurance plan was implemented. The impact of the COVID-19 pandemic on site functioning and project implementation was also assessed. Multi-layered ethics and administrative approvals, limited clinical documentation, difficulty in identifying outcomes requiring in-hospital follow-up, and poor quality internet connectivity emerged as important barriers to study implementation. Use of electronic platforms, application of a rigorous quality assurance plan with frequent interaction between the central and site teams helped improve data quality. The COVID-19 pandemic disrupted data collection for up to 6 weeks in some sites. Our study succeeded in establishing an international hospital-based surveillance network for evaluating perinatal and neonatal outcomes using common study protocol and procedures in geographically diverse sites with differing levels of infrastructure, clinical and health-utilization practices. The enhanced surveillance capacity of participating sites shall help support future pharmacovigilance efforts for pregnancy interventions.

7.
Clin Infect Dis ; 73(10): 1896-1900, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1522151

ABSTRACT

From April to September 2020, we investigated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in a cohort of 396 healthcare workers (HCWs) from 5 departments at Chris Hani Baragwanath Hospital, South Africa. Overall, 34.6% of HCWs had polymerase chain reaction-confirmed SARS-CoV-2 infection (132.1 [95% confidence interval, 111.8-156.2] infections per 1000 person-months); an additional 27 infections were identified by serology. HCWs in the internal medicine department had the highest rate of infection (61.7%). Among polymerase chain reaction-confirmed cases, 10.4% remained asymptomatic, 30.4% were presymptomatic, and 59.3% were symptomatic.


Subject(s)
COVID-19 , SARS-CoV-2 , Cohort Studies , Health Personnel , Humans , Longitudinal Studies , South Africa/epidemiology
8.
Lancet HIV ; 8(9): e568-e580, 2021 09.
Article in English | MEDLINE | ID: covidwho-1366764

ABSTRACT

BACKGROUND: People living with HIV are at an increased risk of fatal outcome when admitted to hospital for severe COVID-19 compared with HIV-negative individuals. We aimed to assess safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine in people with HIV and HIV-negative individuals in South Africa. METHODS: In this ongoing, double-blind, placebo-controlled, phase 1B/2A trial (COV005), people with HIV and HIV-negative participants aged 18-65 years were enrolled at seven South African locations and were randomly allocated (1:1) with full allocation concealment to receive a prime-boost regimen of ChAdOx1 nCoV-19, with two doses given 28 days apart. Eligibility criteria for people with HIV included being on antiretroviral therapy for at least 3 months, with a plasma HIV viral load of less than 1000 copies per mL. In this interim analysis, safety and reactogenicity was assessed in all individuals who received at least one dose of ChAdOx1 nCov 19 between enrolment and Jan 15, 2021. Primary immunogenicity analyses included participants who received two doses of trial intervention and were SARS-CoV-2 seronegative at baseline. This trial is registered with ClinicalTrials.gov, NCT04444674, and the Pan African Clinicals Trials Registry, PACTR202006922165132. FINDINGS: Between June 24 and Nov 12, 2020, 104 people with HIV and 70 HIV-negative individuals were enrolled. 102 people with HIV (52 vaccine; 50 placebo) and 56 HIV-negative participants (28 vaccine; 28 placebo) received the priming dose, 100 people with HIV (51 vaccine; 49 placebo) and 46 HIV-negative participants (24 vaccine; 22 placebo) received two doses (priming and booster). In participants seronegative for SARS-CoV-2 at baseline, there were 164 adverse events in those with HIV (86 vaccine; 78 placebo) and 237 in HIV-negative participants (95 vaccine; 142 placebo). Of seven serious adverse events, one severe fever in a HIV-negative participant was definitely related to trial intervention and one severely elevated alanine aminotranferase in a participant with HIV was unlikely related; five others were deemed unrelated. One person with HIV died (unlikely related). People with HIV and HIV-negative participants showed vaccine-induced serum IgG responses against wild-type Wuhan-1 Asp614Gly (also known as D614G). For participants seronegative for SARS-CoV-2 antigens at baseline, full-length spike geometric mean concentration (GMC) at day 28 was 163·7 binding antibody units (BAU)/mL (95% CI 89·9-298·1) for people with HIV (n=36) and 112·3 BAU/mL (61·7-204·4) for HIV-negative participants (n=23), with a rising day 42 GMC booster response in both groups. Baseline SARS-CoV-2 seropositive people with HIV demonstrated higher antibody responses after each vaccine dose than did people with HIV who were seronegative at baseline. High-level binding antibody cross-reactivity for the full-length spike and receptor-binding domain of the beta variant (B.1.351) was seen regardless of HIV status. In people with HIV who developed high titre responses, predominantly those who were receptor-binding domain seropositive at enrolment, neutralising activity against beta was retained. INTERPRETATION: ChAdOx1 nCoV-19 was well tolerated, showing favourable safety and immunogenicity in people with HIV, including heightened immunogenicity in SARS-CoV-2 baseline-seropositive participants. People with HIV showed cross-reactive binding antibodies to the beta variant and Asp614Gly wild-type, and high responders retained neutralisation against beta. FUNDING: The Bill & Melinda Gates Foundation, South African Medical Research Council, UK Research and Innovation, UK National Institute for Health Research, and the South African Medical Research Council.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , HIV Infections/epidemiology , SARS-CoV-2/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Cross Reactions , Double-Blind Method , Female , Humans , Immunogenicity, Vaccine , Male , Mutation , SARS-CoV-2/genetics , Safety , Vaccination
9.
mSphere ; 6(1)2021 01 27.
Article in English | MEDLINE | ID: covidwho-1325090

ABSTRACT

Despite significant progress in reaching some milestones of the United Nations Sustainable Development Goals, neonatal and early infant morbidity and mortality remain high, and maternal health remains suboptimal in many countries. Novel and improved preventative strategies with the potential to benefit pregnant women and their infants are needed, with maternal and neonatal immunization representing effective approaches. Experts from immunology, vaccinology, infectious diseases, clinicians, industry, public health, and vaccine-related social sciences convened at the 5th International Neonatal and Maternal Immunization Symposium (INMIS) in Vancouver, Canada, from 15 to 17 September 2019. We critically evaluated the lessons learned from recent clinical studies, presented cutting-edge scientific progress in maternal and neonatal immunology and vaccine development, and discussed maternal and neonatal immunization in the broader context of infectious disease epidemiology and public health. Focusing on practical aspects of research and implementation, we also discussed the safety, awareness, and perception of maternal immunization as an existing strategy to address the need to improve maternal and neonatal health worldwide. The symposium provided a comprehensive scientific and practical primer as well as an update for all those with an interest in maternal and neonatal infection, immunity, and vaccination. The summary presented here provides an update of the current status of progress in maternal and neonatal immunization.


Subject(s)
COVID-19 Vaccines/immunology , Pregnancy Complications, Infectious/prevention & control , Vaccination , Female , Humans , Infant Health , Infant, Newborn , Maternal Health , Pregnancy , Vaccination/adverse effects
10.
Lancet ; 397(10277): 881-891, 2021 03 06.
Article in English | MEDLINE | ID: covidwho-1174543

ABSTRACT

BACKGROUND: The ChAdOx1 nCoV-19 (AZD1222) vaccine has been approved for emergency use by the UK regulatory authority, Medicines and Healthcare products Regulatory Agency, with a regimen of two standard doses given with an interval of 4-12 weeks. The planned roll-out in the UK will involve vaccinating people in high-risk categories with their first dose immediately, and delivering the second dose 12 weeks later. Here, we provide both a further prespecified pooled analysis of trials of ChAdOx1 nCoV-19 and exploratory analyses of the impact on immunogenicity and efficacy of extending the interval between priming and booster doses. In addition, we show the immunogenicity and protection afforded by the first dose, before a booster dose has been offered. METHODS: We present data from three single-blind randomised controlled trials-one phase 1/2 study in the UK (COV001), one phase 2/3 study in the UK (COV002), and a phase 3 study in Brazil (COV003)-and one double-blind phase 1/2 study in South Africa (COV005). As previously described, individuals 18 years and older were randomly assigned 1:1 to receive two standard doses of ChAdOx1 nCoV-19 (5 × 1010 viral particles) or a control vaccine or saline placebo. In the UK trial, a subset of participants received a lower dose (2·2 × 1010 viral particles) of the ChAdOx1 nCoV-19 for the first dose. The primary outcome was virologically confirmed symptomatic COVID-19 disease, defined as a nucleic acid amplification test (NAAT)-positive swab combined with at least one qualifying symptom (fever ≥37·8°C, cough, shortness of breath, or anosmia or ageusia) more than 14 days after the second dose. Secondary efficacy analyses included cases occuring at least 22 days after the first dose. Antibody responses measured by immunoassay and by pseudovirus neutralisation were exploratory outcomes. All cases of COVID-19 with a NAAT-positive swab were adjudicated for inclusion in the analysis by a masked independent endpoint review committee. The primary analysis included all participants who were SARS-CoV-2 N protein seronegative at baseline, had had at least 14 days of follow-up after the second dose, and had no evidence of previous SARS-CoV-2 infection from NAAT swabs. Safety was assessed in all participants who received at least one dose. The four trials are registered at ISRCTN89951424 (COV003) and ClinicalTrials.gov, NCT04324606 (COV001), NCT04400838 (COV002), and NCT04444674 (COV005). FINDINGS: Between April 23 and Dec 6, 2020, 24 422 participants were recruited and vaccinated across the four studies, of whom 17 178 were included in the primary analysis (8597 receiving ChAdOx1 nCoV-19 and 8581 receiving control vaccine). The data cutoff for these analyses was Dec 7, 2020. 332 NAAT-positive infections met the primary endpoint of symptomatic infection more than 14 days after the second dose. Overall vaccine efficacy more than 14 days after the second dose was 66·7% (95% CI 57·4-74·0), with 84 (1·0%) cases in the 8597 participants in the ChAdOx1 nCoV-19 group and 248 (2·9%) in the 8581 participants in the control group. There were no hospital admissions for COVID-19 in the ChAdOx1 nCoV-19 group after the initial 21-day exclusion period, and 15 in the control group. 108 (0·9%) of 12 282 participants in the ChAdOx1 nCoV-19 group and 127 (1·1%) of 11 962 participants in the control group had serious adverse events. There were seven deaths considered unrelated to vaccination (two in the ChAdOx1 nCov-19 group and five in the control group), including one COVID-19-related death in one participant in the control group. Exploratory analyses showed that vaccine efficacy after a single standard dose of vaccine from day 22 to day 90 after vaccination was 76·0% (59·3-85·9). Our modelling analysis indicated that protection did not wane during this initial 3-month period. Similarly, antibody levels were maintained during this period with minimal waning by day 90 (geometric mean ratio [GMR] 0·66 [95% CI 0·59-0·74]). In the participants who received two standard doses, after the second dose, efficacy was higher in those with a longer prime-boost interval (vaccine efficacy 81·3% [95% CI 60·3-91·2] at ≥12 weeks) than in those with a short interval (vaccine efficacy 55·1% [33·0-69·9] at <6 weeks). These observations are supported by immunogenicity data that showed binding antibody responses more than two-fold higher after an interval of 12 or more weeks compared with an interval of less than 6 weeks in those who were aged 18-55 years (GMR 2·32 [2·01-2·68]). INTERPRETATION: The results of this primary analysis of two doses of ChAdOx1 nCoV-19 were consistent with those seen in the interim analysis of the trials and confirm that the vaccine is efficacious, with results varying by dose interval in exploratory analyses. A 3-month dose interval might have advantages over a programme with a short dose interval for roll-out of a pandemic vaccine to protect the largest number of individuals in the population as early as possible when supplies are scarce, while also improving protection after receiving a second dose. FUNDING: UK Research and Innovation, National Institutes of Health Research (NIHR), The Coalition for Epidemic Preparedness Innovations, the Bill & Melinda Gates Foundation, the Lemann Foundation, Rede D'Or, the Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunization Schedule , Immunization, Secondary , Adolescent , Adult , Aged , Antibody Formation , Asymptomatic Infections , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Humans , Middle Aged , Randomized Controlled Trials as Topic , SARS-CoV-2/immunology , Young Adult
11.
N Engl J Med ; 384(20): 1885-1898, 2021 05 20.
Article in English | MEDLINE | ID: covidwho-1135713

ABSTRACT

BACKGROUND: Assessment of the safety and efficacy of vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in different populations is essential, as is investigation of the efficacy of the vaccines against emerging SARS-CoV-2 variants of concern, including the B.1.351 (501Y.V2) variant first identified in South Africa. METHODS: We conducted a multicenter, double-blind, randomized, controlled trial to assess the safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) in people not infected with the human immunodeficiency virus (HIV) in South Africa. Participants 18 to less than 65 years of age were assigned in a 1:1 ratio to receive two doses of vaccine containing 5×1010 viral particles or placebo (0.9% sodium chloride solution) 21 to 35 days apart. Serum samples obtained from 25 participants after the second dose were tested by pseudovirus and live-virus neutralization assays against the original D614G virus and the B.1.351 variant. The primary end points were safety and efficacy of the vaccine against laboratory-confirmed symptomatic coronavirus 2019 illness (Covid-19) more than 14 days after the second dose. RESULTS: Between June 24 and November 9, 2020, we enrolled 2026 HIV-negative adults (median age, 30 years); 1010 and 1011 participants received at least one dose of placebo or vaccine, respectively. Both the pseudovirus and the live-virus neutralization assays showed greater resistance to the B.1.351 variant in serum samples obtained from vaccine recipients than in samples from placebo recipients. In the primary end-point analysis, mild-to-moderate Covid-19 developed in 23 of 717 placebo recipients (3.2%) and in 19 of 750 vaccine recipients (2.5%), for an efficacy of 21.9% (95% confidence interval [CI], -49.9 to 59.8). Among the 42 participants with Covid-19, 39 cases (95.1% of 41 with sequencing data) were caused by the B.1.351 variant; vaccine efficacy against this variant, analyzed as a secondary end point, was 10.4% (95% CI, -76.8 to 54.8). The incidence of serious adverse events was balanced between the vaccine and placebo groups. CONCLUSIONS: A two-dose regimen of the ChAdOx1 nCoV-19 vaccine did not show protection against mild-to-moderate Covid-19 due to the B.1.351 variant. (Funded by the Bill and Melinda Gates Foundation and others; ClinicalTrials.gov number, NCT04444674; Pan African Clinical Trials Registry number, PACTR202006922165132).


Subject(s)
Antibodies, Neutralizing/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2 , Adenoviridae , Adolescent , Adult , Antibodies, Neutralizing/physiology , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Serological Testing , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Double-Blind Method , Humans , Middle Aged , South Africa , T-Lymphocytes/physiology , Treatment Failure , Vaccine Potency , Young Adult
12.
mBio ; 12(1)2021 01 08.
Article in English | MEDLINE | ID: covidwho-1066816

ABSTRACT

In December 2019 a new coronavirus (CoV) emerged as a human pathogen, SARS-CoV-2. There are few data on human coronavirus infections among individuals living with HIV. In this study we probed the role of pneumococcal coinfections with seasonal CoVs among children living with and without HIV hospitalized for pneumonia. We also described the prevalence and clinical manifestations of these infections. A total of 39,836 children who participated in a randomized, double-blind, placebo-controlled clinical trial on the efficacy of a 9-valent pneumococcal conjugate vaccine (PCV9) were followed for lower respiratory tract infection hospitalizations until 2 years of age. Nasopharyngeal aspirates were collected at the time of hospitalization and were screened by PCR for four seasonal CoVs. The frequency of CoV-associated pneumonia was higher in children living with HIV (19.9%) than in those without HIV (7.6%, P < 0.001). Serial CoV infections were detected in children living with HIV. The case fatality risk among children with CoV-associated pneumonia was higher in those living with HIV (30.4%) than without HIV (2.9%, P = 0.001). C-reactive protein and procalcitonin levels were elevated in 36.8% (≥40 mg/liter) and 64.7% (≥0.5 ng/ml), respectively, of the fatal cases living with HIV. Among children without HIV, there was a 64.0% (95% CI: 22.9% to 83.2%) lower incidence of CoV-associated pneumonia hospitalizations among PCV9 recipients compared to placebo recipients. These data suggest that Streptococcus pneumoniae infections might have a role in the development of pneumonia associated with endemic CoVs, that PCV may prevent pediatric CoV-associated hospitalization, and that children living with HIV with CoV infections develop more severe outcomes.IMPORTANCE SARS-CoV-2 may cause severe hospitalization, but little is known about the role of secondary bacterial infection in these severe cases, beyond the observation of high levels of reported inflammatory markers, associated with bacterial infection, such as procalcitonin. We did a secondary analysis of a double-blind randomized trial of PCV to examine its impact on human CoV infections before the pandemic. We found that both children living with and without HIV randomized to receive PCV had evidence of less hospitalization due to seasonal CoV, suggesting that pneumococcal coinfection may play a role in severe hospitalized CoV infections.


Subject(s)
AIDS-Related Opportunistic Infections/prevention & control , Coronavirus Infections/prevention & control , Pneumococcal Vaccines/administration & dosage , Pneumonia, Viral/prevention & control , Streptococcus pneumoniae/immunology , AIDS-Related Opportunistic Infections/epidemiology , AIDS-Related Opportunistic Infections/pathology , Coinfection/epidemiology , Coinfection/microbiology , Coinfection/prevention & control , Coinfection/virology , Coronavirus/classification , Coronavirus/isolation & purification , Coronavirus Infections/epidemiology , Coronavirus Infections/pathology , Follow-Up Studies , Hospitalization/statistics & numerical data , Humans , Incidence , Infant , Pneumonia, Pneumococcal/epidemiology , Pneumonia, Pneumococcal/prevention & control , Pneumonia, Viral/epidemiology , Prevalence , Randomized Controlled Trials as Topic
13.
Lancet ; 397(10269): 99-111, 2021 01 09.
Article in English | MEDLINE | ID: covidwho-1057535

ABSTRACT

BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Adolescent , Adult , Aged , Brazil , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Double-Blind Method , Female , Humans , Male , Middle Aged , Single-Blind Method , South Africa , Treatment Outcome , United Kingdom , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL